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Let f be a formal power-series. A Padé approximant of f is a rational
function whose numerator and denominator are chosen so that its power
series expansion (which is obtained by dividing the numerator by the de-
nominator) agrees with f as far as possible, that is, at least up to the term
whose degree equals the sum of the degrees of the numerator and the de-
nominator of the rational function.

Such approximants have a long history and they have played an impor-
tant role in the solution of many problems such as the transcendence of
the numbers e and 7 and have given birth to some fundamental ideas in
mathematics such as the spectral theory of operators. They are also closely
connected to continued fractions; see Brezinski (1990) and Lorentzen and
Waadeland (1992). Thirty years ago, Padé approximants were rediscov-
ered by physicists and they proved to be a very efficient tool not only for
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improving existing methods but also for extracting important information
from power series and thus leading to new possibilities which were not open
before.

Let us give some examples and begin with a purely mathematical one.
We shall consider the series

f(2)=2z—-2%24+28/3 24+,

which is known to converge to In(1 + z) for |2|] < 1,z # —1. Thus the
simplest process for obtaining an approximate value of In(1 + z) is to sum
the series up to a certain term. Let us call fi(z) the partial sum of f up
to the term of degree k inclusive and let [p/q]¢(z) be the Padé approximant
of f whose numerator and denominator have the respective degrees p and g
at most. As we shall see below, the computation of this Padé approximant
requires the knowledge of the coefficients of f up to that of the power p+gq.

For z = 1 we have In2 = 0.6931471805599453 .... For z = 2, the series
diverges and we have In3 = 1.098612288668110. ... The Padé approximants
give the results presented in the following table.

k| far(1) | [R/K]£(1) k| fa(2) | [R/KI5(2)

1| 0830 | 0.7 1 {0.260-10' | 1.14

2 | 0.783 | 0.6933 2 | 0.506-10! | 1.101

3 | 0.759 | 0.693152 3 |{0.126-10% | 1.0988

4 | 0.745 | 0.69314733 4 | 0.375-10% | 1.098625

5 | 0.736 | 0.6931471849 5 | 0.121-10° | 1.0986132

6 | 0.730 | 0.69314718068 6 | 0.410-10% | 1.09861235

7 | 0.725 | 0.693147180563 7 | 0.142-10* | 1.098612293

8 | 0.721 | 0.69314718056000 8 | 0.504-10* | 1.0986122890

9 | 0.718 | 0.6931471805599485 9 | 0.181-10° | 1.098612288692
10 | 0.716 | 0.6931471805599454 10 | 0.655 - 10° | 1.0986122886698

Figures 1 and 2 below display respectively the partial sums [3/0], [5/0] and
[7/0] of the series for arctan x for real values of  and its Padé approximants
[2/1],[3/2] and [4/3]. Each of them is easily recognizable. They clearly show
that the domain of convergence of the series has been increased.

For other examples from physics, the interested reader is referred to the
very complete book of Baker and Graves-Morris (1981), to the work of A. P.
Magnus (1988) and to Guttmann (1989). Applications to numerical analysis,
through the use of continued fractions, are described by Jones and Thron
(1988). See Brezinski (1991a) for a bibliography.
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Fig. 1. Partial sums of arctanz

0.5 1 1.5 2 2.5 3

Fig. 2. Padé approximants of arctanz

1. Algebraic theory

Let us first begin with some definitions.

1.1. Definitions

Let us now give the exact definition of Padé approximants. We shall give
two approaches to the subject: a direct one which is sufficient to under-
stand it and a more complicated one which leads to a better grasp of its
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numerous relations with the theory of formal orthogonal polynomials and
will serve as a basic tool for developing recurrence relations for the compu-
tation of Padé approximants and for other purposes that will be discussed
later.

Let f be a formal power series with complex coeflicients

f(z)=00+012+0222+c3z3+...‘

Definition 1.1 The Padé approximant [p/q|¢(z) is a rational function
N(z)/D(z) such that degree N < p, degree D < q and

N(z) - f(z)D(2) = O(2*¢*1), 2z 0.

Let us write
N(z)=ap+a1z+ -+ ap2?,

D(z) =bp+ b1z + -+ bg2?.
Then the conditions of the definition lead to

ag = cobo,
a1 = c1bg + coby,

0 = cpribotocpby +---+ Cp_q+1bq,

0 = cptgbo + cpyg—1b1 + -+ + coby

with the convention that ¢; = 0 for 7 < 0.

The last ¢ equations contain g + 1 unknowns by, ...,b; and, thus, this
system has a non-trivial solution. With knowledge of the b;’s, the first p+1
equations directly give the a;’s.

Two solutions of the problem lead to the same rational function since
Ni(2)— f(2)Di(z) = O(2P711) and Nao(z)— f(2)D2(2) = O(2P*T9+!) implies
Ni1(2)Da(z) — D1(2)Na(z) = O(zP+7+1). But the degree of NyDy — DN,
is at most p + ¢ and thus Ny(z)Ds(z) is identical to D;(2)N2(2). N and
D can have a common factor. In particular if z* is a factor of D, it is
also a factor of N, as can be seen from the previous system, and thus
N(z)/D(z) cannot have a pole at the origin. Dividing by the highest
power k in z contained in D gives a solution with D(0) # 0 and degree

N < p—k,degree D < q—k,N(2) - f(2)D(z) = (9(zp+q+l'k), and we
have
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Theorem 1.1 Let R(z) = N(z)/D(z) be an irreducible rational function
with degree N =p—k, degree D =q— k,k > 0, and

N(z) = f(z)D(z) = O(F+eH17%) . 2 0.
Then, fori,5 =0,...,k,
[p—k+i/qg—k+j]i(2) = R(2)

and no other Padé approximant is identical to R if k£ is a maximum.

The result follows from the definition of Padé approximants and their
uniqueness. This identity between Padé approximants can hold for all ¢
and j (see Property 1.5) and, in that case, f is a rational function with a
numerator of degree p — £ and a denominator of degree ¢ — k£ or there may
exist a maximal value of k for which it holds and, in that case, no other
Padé approximant is identical to R.

Usually the Padé approximants are arranged in a double-entry table known
as the Padé table

[0/0] [0/1] [0/2]
[1/0] (1/1] [1/2]
2/0] 2/1] [2/2]

The theorem given above was proved by Henri Padé in 1892 (see Padé,
1984). It says that identical Padé approximants can only occur in square
blocks of the table, a property known as the block structure of the Padé
table. If the Padé table does not contain blocks, it is said to be normal;
otherwise it is called non-normal. This block structure corresponds in fact
to the block structure of the table of formal orthogonal polynomials (see
Subsection 1.4) which itself mimics the block structure of the table of Hankel
determinants (see Subsection 1.3). On these questions see Gragg (1972), de
Bruin and Van Rossum (1975), Gilewicz (1978) and Draux (1983).

Other algebraic properties of Padé approximants will be given in Subsec-
tion 1.2.

Let us now come to the second approach to the subject.

Let ¢ be the linear functional on the space of complex polynomials defined
by

c(zt) = ¢;.
The functional ¢ can be extended to the space of formal power series, thus
leading to formal (that is, term-by-term) identities.

Our second approach is based on the following obvious formal identity
which is given as a theorem since it is fundamental.
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/() zc(l—lxz>'

The problem of approximating f(z) is classical in numerical analysis. For
example, if an approximation of

I= /abg(:v)w(x)d:v

is wanted, one can replace g by an interpolation polynomial and integrate it.
This procedure leads to a so-called interpolatory quadrature formula which
is exact on the space of polynomials of degree at most k—1 if k interpolation
points are used. If these interpolation points are the zeros of the polynomial
of degree k belonging to the family of orthogonal polynomials on [a, b] with
respect to w, the quadrature formula, called a Gaussian quadrature formula,
becomes exact on the space of polynomials of degree at most 2k — 1 (instead
of k — 1). Thus, in order to obtain an approximation of f(z), let us replace
1/(1 — zz) by its (Hermite) interpolation polynomial and then apply the
functional ¢ (which is analogous to integration). We have

Theorem 1.2

Theorem 1.3 Let vi(z) = (x — x1)* -+ - (x — 1,)*, where z1,...,z, are
distinct points in the complex plane and k = k; + - - - + k. The polynomial

RBile) =1 —1:vz (1 - U:I(cia‘:)l))

is the Hermite interpolation polynomial of degree k — 1 of (1 — zz)™!, that
is, the polynomial such that

i d’ _
R (@) = 51 -22)7"

r=x;
fori=1,...,nand j=0,...,k; — 1.

The proof of this result was given by Brezinski (1983a). Let us now apply
the functional ¢ to Ry in order to obtain an approximation of f(z). We have

(Ri(z)) = 1 <Uk(z_l) - Uk(il?)> .

ve(z71) 1-zz

Setting
wi(2) = ¢ (Uk(z) - Uk(l')) ,

z—x
where ¢ acts on x and z is a parameter, it is easy to see that wy is a
polynomial of degree k£ — 1 in z and that

c(Ri(x)) = wr(2)/0x(2),
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where Wy, (z) = 25 lwg(271) and 9x(2) = zFvp(z71). Thus c¢(Rk(z)) is a

rational function whose numerator has degree k — 1 at most and whose
denominator has degree k at most. Moreover

c(Ri(z)) = ¢ (1 _lxz) - qj:(kz)c (;}Ii(a;:)z)
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This property is quite similar to the property of interpolatory quadrature
formulae to be exact on the space of polynomials of degree at most k — 1.
Thus ¢(Rg(z)) appears as a generalization of such formulae for the func-
tion (1 — zz)~!. Such rational functions, whose poles (the zeros of 7;) are
arbitrarily chosen, are called Padé-type approximants of f. They will be
denoted by (p/q)f(z). They generalize the Padé approximants. They have
interesting properties and will be studied in Subsection 3.1.

From the above formula for the error, we have

k

4 a:kzk
c(R(z)) = f(2) — — ¢ (Uk(:c) (1 + x4kl g ———>> _

Uk (2) 1—-2zz

The polynomial v, called the generating polynomial of the Padé-type
approximant (k — 1/k), can be arbitrarily chosen and we have k degrees of
freedom (its k zeros or k among its k + 1 coefficients since the numerator
and the denominator of a rational function are uniquely defined apart from
a multiplying factor). Thus, let us take vx such that

c(zlvp(x)) =0 for i=0,...,k—1.
In that case we shall have
c(Ri(@)) = f(2) + O(2*).

But 2k = (k—1)+k+1 which shows that ¢(Rk(z)) matches the original series
f up to the degree of the numerator plus the degree of the denominator.
Thus ¢(Rg(z)) is the Padé approximant [k —1/k] of f. It can be understood
as a generalization of Gaussian quadrature formulae for the function (1 —
zz)~! since it is exact on the space of polynomials of degree at most 2k — 1.

The relations c(zivy(z)) = 0 for ¢ = 0,...,k — 1 show that vy is the
polynomial of degree & belonging to the family of (formal) orthogonal poly-
nomials with respect to the functional c. In that case v will be denoted by
Py.. Thus formal orthogonal polynomials appear in a very natural way in the
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theory of Padé approximants. They form the basis of their algebraic study
and lead to recurrence relationships for their computation. These questions
will be studied in Subsection 1.5.

Moreover, by construction, we have the following error formula

2k k
$G) = = 1K) = 2 )c(ﬁf’ﬁ))-

But (Py(x) ~ Py(2z71))/(1 — z2) is a polynomial of degree k ~ 1 in z and,
due to the orthogonality relations of Pj,

) — -1 2
() o () e (22

and thus

z2k 2 T
$16) = I~ 1/K5(5) = 7 )c(fk_(xi).

These expressions are useful for estimating the error in Padé approximation.
It is easy to see that

f(2) = [k — 1/k]#(2)

z+kz

with d; = c(a:iPk(a:)) = bOCi+bICi+1+' . '+bkci—+—k and Pk(:v) =bg+-- -+bkl‘k.
Obviously, by the orthogonality property of Py, d; =0fori=0,...,k—1.

1.2. Algebraic properties

In this subsection we shall give some algebraic properties of the Padé ap-
proximants. The first one is a determinantal formula which was obtained
by Jacobi in 1846 using a determinantal formula due to Cauchy for interpo-
lating rational functions.

We set
k .
fu(z) = Zcizz for £ > 0,
i=0
= 0 for k < 0.

Then, the following property holds:
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Property 1.1

2fpq(2) 29 fpgqr1(2) -+ fol2)

Cp—g+1 Cp—q+2 T Cpel
1 .. cp
p/aly(e) = —P—— 22 e
Cp—q+1 Cp—q+2 ' Cptl
p Cp+1 "t Cpig

Let us now assume that f(0) = ¢y # 0 and let g be the reciprocal series
of f formally defined by

f(2)9(z) = 1.
Setting g(z) = do + d1z + d22? + - - - we have

C(]d():]-’
codi +c1di1+ - +cdp =0, 1>1.

Then we have

Property 1.2
Vp, 4, [p/ql5(2)la/plg(z) = 1.

This property is very useful since it relates the two halves of the Padé
table.

The other algebraic properties deal with transformations of the variable
and of the series. They have been gathered in the two following properties:

Property 1.3

L. Let g(2) = f(az),a # 0. Then [p/aly(2) = [p/al(a2).

2. Let g(z) = f(2¥),k > 0. Then, Vi,j such that i +j < k — 1,[pk +
i/gk + jlg(2) = [p/q) 5 (¥).

3. Let T(z) = Az*/R(z),A # 0, with R a polynomial of the degree
k > 0 such that R(0) # 0. Let g(z) = f(T'(2)). Then, Vi,j such that
i+j <k—1[pk+i/qk+ jlg(2) = [p/dls(T(2))-

Property 1.4

1. Let g(z) = #*f(2). Then [p+ k/dly(2) = #lp/al ().

2. If cg=--+ = cx_1 = 0 and ¢ # 0 and if we set g(z) = 27 % f(2) then
[p/dlg(2) = 27*[p + k/q]4(2).

3. Let R be a polynomial of degree k. If p > q + k then [p/q]s1r(2) =
[p/q]£(2) + R(2).
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4. Let g(z) = (A+ Bf(2))/(C + Df(z)) with C + Dcg # 0. Then

_ A+ Blp/pls(2)

5. Let g(z) = af(z),a # 0. Then [p/ql4(2) = a[p/q]s(2).

An important property is that of consistency.

Property 1.5 Let f be the power-series expansion of a rational function
with a numerator of degree p and a denominator of degree q. Then Vi,j >

0,[p+i/q+Jls(2) = F(2).

A useful formula is the so-called Nuttall compact formula, obtained by
Nuttall (1967). A generalization of it is

Property 1.6 Let {g,} be an arbitrary family of polynomials such that
V¥n, g, has the exact degree n. Let V be the k X k matrix with elements
vij = ¢((1 — z2)gi—1(x)gj—1(x)) for 4,5 = 1,...,k, let v/ be the vector with
components v; = ¢(g;i—1(z)(1 — vg(z) /vr(2z71))) for i = 1,...,k and let u be
the vector with components u; = ¢(¢g;—1(z)) for i =1,..., k. Then

(k= 1/k)5(2) = (u, V™),
where vy, is the generating polynomial of (k — 1/k). If v = Py then
[k~ 1/k]#(2) = (u, V™1).

If go(z) = 2", then v;; = ¢iyj—2 — 2¢i4j-1,%; = c;—1 and the formula
for [k — 1/k] exactly reduces to Nuttall’s. Since (k — 1/k) only depends on
g, . - .,Cx—1 then, in the preceding formula, c,...,c9r_1 can be arbitrarily
chosen. In particular they can be set to zero. If ¢,(z) = P,(z), the preceding
extension of Nuttall’s formula is closely related to the matrix interpretation
of Padé approximants; see Gragg (1972).

1.3. Formal orthogonal polynomials

As seen in Subsection 1.1, Padé approximants are based on formal orthog-
onal polynomials. Thus we shall now digress to treat this subject. The
other approximants of the table are related to other families of orthogonal
polynomials, called adjacent families of orthogonal polynomials, which will
be studied in Subsection 1.4.

Let ¢ be the linear functional on the space of complex polynomials defined
by its moments c¢;

(') =¢, i>0.

Let { Py} be a family of polynomials. {Py} is said to be the family of formal
orthogonal polynomials with respect to c if, Vk > 0,
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1. P, has the exact degree k;
2. c(z*Pe(z))=0fori=0,...,k—1.

Conditions (2) are the so-called orthogonality relations. They are equivalent
to the condition ¢(p(z)Px(x)) = 0 for any polynomial p of degree k — 1 at
most or to ¢(Py(z)Pr(x)) = 0,Vn # k. The usual orthogonal polynomials
(that is, those orthogonal with respect to ¢(-) = f:() da(z) with a bounded
and nondecreassing in [a,b]) are known to satisfy a bunch of interesting
properties such as a three-term recurrence relation, the Christoffel-Darboux
identity, properties of their zeros, etc. Most of these properties still hold for
formal orthogonal polynomials. However, in that case, the first question is
that of existence. Let us write Py as

Pi(z) = ap + a1 + - - - + agzt.

Then the orthogonality relations are equivalent to the system
aopCi + a16i+1 + - -+ agcipr =0, 1=0,...,k—1.

Since P, must have the exact degree k, a; must be different from zero or,
in other words, the Hankel determinant

CO e ck—l
Cl PP ck
0)
H =
k
Ck—1 - C2k—2

must not vanish. Thus, in the sequel, we shall assume that Yk > 0, H ,50) # 0.
In that case, we shall say that the functional c is definite, a property clearly
related to the normality of the Padé table. The case where the functional ¢
is non-definite has been extensively studied by Draux (1983).

In the definite case, the polynomial Py is uniquely determined apart from
an arbitrary non-zero constant. Moreover we have the following determi-
nantal formula

¢ € - C
C1 C2  Ck41

Py(z) = Dy :
Ck—-1 Ckp -+ C2k—1

1 T .- zk

with Dy, # 0 and Py(x) = Dg. Let us set Py(z) = tpz* + spz*~1 + ---. For
a family of formal orthogonal polynomials we have

Theorem 1.4 Vi >0,
Pit1(z) = (Aks12 + Bry1) Pi(z) — Cry1Pro1(z)
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with P_;(z) = 0, Py(z) = to,

aglrt1
Ay =tgy1/ty, Bryr = "t
te—1tk41 hi
Cot1= —(3— 77
te he-1

ar = c(zP; (), hi, = e(P(2)).

Since P is determined apart from a multiplying factor, the t;’s in the
preceding recurrence relation can be arbitrarily chosen and thus this relation
can be used for computing recursively the Pi’s. In particular the choice
t; = 1 leads to monic orthogonal polynomials.

The reciprocal of this theorem was first proved by Favard (1935) for the
usual orthogonal polynomials. It was extended by Shohat (1938) (see also
Van Rossum (1953)) to the formal case.

Theorem 1.5 Let {F;} be a family of polynomials such that the relation
of Theorem 1.4 holds with to # 0 and Vk, A;C) # 0. Then {P;} is a family
of formal orthogonal polynomials with respect to a linear functional ¢ whose
moments ¢; can be computed.

Let us now define the associated polynomials @y by
Py(z) — Pi(2
Qu(e) = o (D)),
T—2z

where c acts on = and where z is a parameter. It is easy to see that Q is a
polynomial of degree k — 1 in z, that Qg(z) = 0 and that, for k£ > 1,

co a e ck
Qx(z) = Dy : : : :
Ck—1 Ck Ck+1 e C2k—1
0 ¢ coz4cy - (co* 1+c12¥ 2+ +cp)

Theorem 1.6 The family {Qx} satisfies the three-term recurrence rela-
tion of Theorem 1.4 with @_;(z) = —1,Qo(z) = 0 and C1 = A1c(Po(z)).
Moreover, Vk > 0

Pr(7)Qr+1(z) — Qk(2) Prt1(z) = Agt1hi.

Some other relations satisfied by the P.’s and the Qx’s are given in the
definite case by Brezinski (1980, chapter 2).
It follows from Theorem 1.6 that

b= 1K () 4 P ok
6/ 115(2) = k= 1/kl(2) + 5ot ?



A TASTE OF PADE APPROXIMATION 65

a relation known as the Euler-Minding identity and which follows directly
from the theory of continued fractions.

All these relations have been extended to the non-definite case by Draux
(1983).

The zeros of the classical orthogonal polynomials are known to possess
some properties. Not all of them extend to the formal case. In particular the
zeros of formal orthogonal polynomials need not be simple or real. However,
we have

Theorem 1.7 If ¢ is definite, then Vk > 0

1. P and Pi41 have no common zero,
2. Qk and Qg+1 have no common zero,

3. P, and @ have no common zero.

To end this subsection let us mention that a matrix formalism of orthog-
onality can be given via tridiagonal matrices. Orthogonal polynomials are
known to play an important role in numerical analysis. In particular they
are closely connected with projection methods used in the theory of lin-
ear operators, for example, with the method of moments, Lanczos’s method
and the conjugate gradient algorithms (see Section 4). All these connections
were reviewed by Brezinski (1980, section 2.7, 1994); see also the works of
Gutknecht (1990, 1992).

The notion of orthogonality studied in this subsection is a particular case
of the more general notion of biorthogonality between a family of elements of
a vector space and a family of elements of its dual. The notion of biorthog-
onality was extensively studied in Brezinski (1991b).

1.4. Adjacent families of orthogonal polynomials

Let us now define the linear functionals ¢(™ by
™ () = cpps.

With the same convention as above, namely, that ¢; = 0 for ¢ < 0, these
linear functionals ¢(™ can be defined even for negative values of the upper
index n.

Let us denote by {P,E")} the family of formal orthogonal polynomials with
respect to c(®). The family {P;} studied in Subsection 1.3 corresponds to
n = 0. Such families are called adjacent families of orthogonal polynomials.
They satisfy the same properties as above after replacing ¢ by ¢(™ or, in other
words, the sequence cg,cy,... by the sequence ¢,,cpy1,.... In particular
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{P,Sn)} exists only if Vk,n

e 't Cngk—1
HY = L #0.

Cnt+k—1 " " Cn42k—2

In that case we shall say that the linear functional ¢ is completely definite.
For the non—completely definite case, we again refer the interested reader to
Draux (1983).

The polynomials P,S") are usually placed in a double-entry table similar
to the Padé table

P(Ol) Pé_l) Pl(—z) P2(—3)
P(ll) PO(O) Pl(—l) P2(—2)
P(21) Pél) PI(O) P(—l)

2
PO p®  p  pO

Many relationships exist between adjacent polynomials of this table. First
of all, each family of orthogonal polynomials satisfies a three-term recurrence
relation similar to that of Theorem 1.4. Assuming all the polynomials to be
monic we shall write this relation as

P™(z) =0, P™(z) =1, .
[ ]
P (2) = (2 — ¢, — )P (2) - ¢Me™ P, (2). *

A e indicates the position of a polynomial that is known in the table, while a
* indicates the position of the polynomial that is computed by the relation.
We also have

P (2) = PV (z) — " PP (2), o o

P () = 2P (2) — ¢, P (). o
[ ] E 3

Using alternatively these two relations allows us to compute recursively
the two adjacent families {P,g")} and {PIE"H)},

It can be proved (see, for example, Brezinski (1980, section 2.8) where all

these relations and the following ones are given) that the numbers ei") and

q,(cn) are related by

68") =0, q§") = Cp+1/Cn,
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n +1 +1
ql(cj-)l + e§c+)1 = ql(cil )+ egcn )
egcn)q’(:,,.)l _ egcn-i—l)ql(cn-kl)

which is the so-called Qd algorithm. This algorithm can be used for their
recursive computation. It is due to Rutishauser (1954) (see also Henrici
(1974)) and was the basis for the development of the LR-algorithm for the
computation of the eigenvalues of a matrix. Setting x = 0 in the preceding
relations, it is easy to see that

i = H D EOH
4 = H O

From these determinantal expressions and from the three preceding rela-

tions we can obtain the following ones
HMPHP PN (@) = [HIVPPI @) + B H P (@),

HVELRG @) = eV HET RO @) - O PR @),

B HED B R = R O, B P )
~EHTVETVR (@),

HOEMVH R @) = eHVEST - D ED R (@)
e H VR, HD R o)

Combining these relations leads to many other ones. However, the preced-

ing eight relations are sufficient to follow any path in the table of the adjacent

families of orthogonal polynomials. Of course similar relations hold among
the associated polynomials

Q(")(z) — C(n) (Plgn)(w) _ Plgn)(z)> ]

k r—z

1.5. Recursive computation of Padé approximants

Let us first relate all the approximants of the Padé table to the adjacent
families of orthogonal polynomials defined in the Subsection 1.4. Thus the
recurrence relations given there will provide recursive methods for computing
any sequence of Padé approximants.

In Subsection 1.1, we saw that

[k — 1/k]4(z) = @0 (2) /B (2).

Making use of the convention that a sum with a negative upper index is
equal to zero, it is easy to see that
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Theorem 1.8 Vk >0,Yn > —k

I+ Bk () = 3 eist + 2100 (2 B (2)
i=0

with PIS"H)(z) = sz,gnH)(z_l) and Q,(cnﬂ)(z) = zk_lQ,(c"H)(z‘l).

Let us set
n+ /K] 1(z) = N{0(2) /B (2)
and

~ k .

B =
i=0

R n+k—1 '

N,gn)(z) = Z az(-k’n)z’.
i=0

The relations of the preceding subsection give

(n k,
NI£+)1( ) (’C_’_7116+1)N("+2)( ) — (+7;:r21)N("+1)( ) ..
k, n+2 k,

PR ol TIPI @) - w VRN ()

[ 4
N () _ ald ™) — N (2 )
PP(:) ol B @) - ol RTP (2)

® o

These two relations are identical with a method due to Longman (1971)
for computing recursively approximants located on an ascending staircase
of the Padé table. They also cover an algorithm due to Baker (1970).

We have

NP N (2) - PN ()
)

= = — = s [ ] [ ]
Pz B (2) — MBI (2)
*
N _ M) - g6
Bio(z)  PIV(z) — 2P (2)
[ ] *

with e = h{W/R0HD (@ = pHD ) ng g = o) (P (7)) =

k—1 941
Ez_g cn+k+lb( ™) These two relations are identical to a method due to
Watson (1973) to compute recursively approximants located on a descending

staircase of the Padé table.
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We also have

~k = — = s [ ] ®
e TR E) - TR ()
*
* ®
7 1 r(n >(n
NG M) - 8D ) .
Pz PP(z) - PIMY(2)
®
o Sr(n+1 r(n
NPE) M) - N () )
Pz PMY () — B (2)
® ®

Combining these relations together allows one to obtain all the other pos-
sible ones. Eight of them were used in a conversational program to com-
pute recursively any sequence of Padé approximants in the normal case; see
Brezinski (1980, appendix).

All these recurrence relations were extended by Draux (1983) to the non-
normal case. A universal conversational program for computing any se-
quence of Padé approximants in the non-normal case was given by Draux
and Van Ingelandt (1986). In order to avoid numerical instability and also
for the detection of the block structure of the Padé table, it was necessary
to program these relations in exact arithmetic that is in rational arithmetic
coded on several words. All these programs are written in FORTRAN.

Setting for simplicity

[n+k—1/k] =N,
n+k/k—1=W, [n+k/kl=C, [n+k/k+1]=E,

m+k+1/kl =S5,

we obtain, after elimination among the preceding identities, the so-called
cross rule of Wynn (1966)

(N-CO)*'+(S-O)t=w-0O)'+E-0)

When a square block of size m occurs in the Padé table, this cross rule was
extended by Cordellier (1979) who proved that

(N, —O) 14+ (S-O) =W, —-C) 1+ (E; —C)!

for i =0,...,m, where the N;’s and the W;’s are numbered from the upper
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left corner of the block and the S;’s and the E;’s from its lower right one.
The initial values are

“1gls(2) =0, o/ ~1s(2) = .
p/0](2) zcz, 10/d15(2) = (la/0l( (zdz>,

where the d;’s are the coefficients of the reciprocal series g of f.

Thus, the theory of formal orthogonal polynomials provides a basis for
rediscovering known recursive methods for the computation of sequences
of Padé approximants which were found more or less heuristically by their
authors. This theory also gives us the possibility of computing any sequence
of approximants by new recursive algorithms. It has been possible to extend
the theory to the non-normal case, thus leading for the first time to all the
possible recurrence relationships among the entries of a non-normal Padé
table and to write the only existing complete subroutine.

1.6. The e-algorithm

We shall now deal with a subject which, a priori, has nothing to do with
Padé approximation but which is, in fact, closely related to it: convergence
acceleration.

Let (Sp) be a sequence converging to S. If the convergence is slow, one
can try to accelerate it. For that purpose, we shall transform the sequence
(Sr) into another sequence (7},) such that, if possible, (T},) converges to S
faster than (Sy), that is,

lim (T, — S)/(Sn, — S) =0.

n—oo

One of the most popular sequence transformations for that purpose is cer-
tainly Aitken’s A2 process which corresponds to

Ty = Sn — (AS,)?/A%S, forn=0,1,....

If the sequence (S,) is such that Ja # 1,lim, 00(Spt1 — 5)/(Sn — §) =
then (1) obtained by Aitken’s process converges to S faster than (S,,).

In 1955, Shanks (1955) gave a generalization of Aitken’s process. He
considered the various transformations ey, : (Sp) — (ex(S,)) where

Sn e Sn+k
o
ex(Sn) = Sn+k 2k

A%S, o A2S,ip

A%S, k1 0 A2Spiok-o
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A recursive algorithm to compute the ex(S,)’s without computing the de-
terminants involved in their definition was found one year later by Wynn
(1956). It is the e-algorithm whose rules are

5(_711):0’ E-:(()n):‘s”n’ n:0a17"'a

-1
) = L ] kim0
It is related to Shanks’s transformation by

e = e4(Sn).
The eg&l’s are only intermediate quantities. The e-algorithm is a quite
powerful acceleration process which has been widely studied. For its theory
one can consult, for example, Brezinski (1977). Subroutines and applications
can be found in Brezinski and Redivo-Zaglia (1991).
The e-algorithm is related to Padé approximants in the following way: if
it is applied to the partial sums of the series f, that is, if

n
Sn=Zc,~z’, n,=0,1,...,
rd

then
eg,? = [n+ k/k]¢(2).

Thus the e-algorithm can be used to compute recursively the lower half
of the Padé table. The upper half of the Padé table can be computed by
applying the e-algorithm to the partial sums of the reciprocal series g of f as
stated in Property 1.2. Let us mention that the elimination of the £’s with
an odd lower index leads to Wynn’s cross rule mentioned in the preceding
subsection.

2. Convergence
2.1. Introduction

More complete results about convergence can be found in Brezinski and Van
Iseghem (1994) or Baker and Graves-Morris (1981).

The problem of convergence of Padé approximants, which means the con-
vergence of a sequence of Padé approximants when at least one of the degrees
tends to infinity, is a difficult problem which can be studied from different
points of view. The first one is to study all the abilities of convergence to one
function and the first theorem (due to Padé) is an example of such a study
for the exponential function. The history of numbers such as e or 7 tells
us, through the link with continued fractions, that it is also possible to do
so for functions such as tanz, arctan z and some others. At the other end,
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it is possible to hope for convergence results for a whole class of functions.
The most useful and well known examples are the meromorphic functions
with a fixed number of poles in a disc (convergence of the columns) and the
Stieltjes functions, for which the classical uniform convergence on compact
subsets of C can be proved for the diagonal and paradiagonal sequences.

In each case, the problems are different if the sequences considered are in a
column, a diagonal or a paradiagonal; close to these cases are, for example,
sectorial sequences where m/n has lower and upper bounds as n goes to
infinity. Other cases could also be considered.

We will first quote two results which show the most optimistic result that
can be expected and a counterexample which limits our ambitions.

Theorem 2.1 For any sequence (m;,n;),i > 1, where m; + n; tends to
infinity, the poles of the Padé approximants of e* tend to infinity and

lim [m;/ni](z) = &

uniformly on any compact set of C.

The following result is due to Wallin (1974).

Theorem 2.2 There exists an entire function f such that the sequence
of diagonal Padé approximants ([n/n]s) is unbounded at every point of the
complex plane except zero, and so no convergence result can be expected in
any open set of the plane.

As we shall see below, the location of the poles of the approximants is of
primary importance for studying convergence: for meromorphic functions,
they are supposed to be known, and so Montessus de Ballore’s theorem
is obtained. For Stieltjes functions, the link with orthogonal polynomials
is extensively used; they are, in that case, defined by a positive-definite
functional, and so properties about the zeros are known.

As a consequence, functions with branch points, for example, are outside
of our study, and convergence will be obtained on extremal subsets of C that
localize the set of zeros and poles of the Padé approximants as a barrier to
convergence.

Let us now give a very simple example showing the difficulties related
with the convergence of Padé approximants (that is, the convergence of a
sequence of approximants). We consider the series given by Bender and
Orszag (1978)

o0

@)= 1 =Y e

— 2
1-2% =
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with ¢o; = 10 and c¢9;41 = 1. It converges for |z| < 1. We have

[k/1] 2t —
/s Zq 1—Ck+12/0k

When k is odd, [k/1] has a simple pole at z = 1/10 while f has no pole.
Thus the sequence ([k/1]) cannot converge to f in |2]| < 1.

This example shows that the poles of the Padé approximants can prevent
convergence and that a sequence of approximants can be non-convergent
in a domain where the series is. In order to prove the convergence of a
sequence of Padé approximants in a domain D of the complex plane, it
must be proved that the spurious poles of the approximants (that is, the
poles that do not approximate poles of f) move out of D when the degree(s)
of the approximants tends to infinity.

Another more paradoxical situation can arise: the zeros of the Padé ap-
proximants can also prevent convergence. Let us take the reciprocal series
g of the series f of the preceding example

It converges in |z| < 10. We have

[1/klg(2) = 1/[k/1]#(2).

Since [1/2k + 1]4(0.1) = 0 and ¢(0.1) # O the sequence ([1/k|g) cannot
converge in |z| < 10 where the series g does.

Another counterexample is due to Perron (1957). Let an arbitrary se-
quence (z,) of points of C be given, and let us define the following function

= Zqzi,
i=0
if |2, <1, c3,=2,/(B3n+2)!,
C3n+1 = C3n+2 = 1/(3n + 2)!,
if |zn| > 1, c3n = cant1 =1/(3n+2)!,
Cantz = 2, /(3n+2)L.

We have |¢;| < 1/i,Vi > 0. Thus f is an entire function and either [3n/1] or
[3n +1/1] has a pole at z,. The sequence (z,) is a subsequence of the poles
of ([m/1]) and if (z,) is dense in C, the sequence ([m/1]) cannot converge
in any open set of the complex plane.

2.2. Meromorphic functions

Let us first consider the convergence of the columns ([m/n]),, of the Padé
table.
The most famous theorem is that of de Montessus de Ballore (1902). It is
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concerned with meromorphic functions with a fixed known number of poles
in the disc of radius R centered at the origin.

An extension of this result has been given by Saff (1972) for the case of
interpolating rational functions instead of Padé approximants. Montessus’s
theorem is then a particular case of it when all the interpolation points
coincide at zero.

Theorem 2.3 (Montessus de Ballore’s theorem). Let f be analytic at
z = 0 and meromorphic with exactly n poles ay, ..., ay, counted with their
multiplicities, in the disc Dr = {z,|2|] < R}. Let D be the domain Dg —
{ai}i=1,.in -

The sequence ([m/n])m>o0 converges to f uniformly on every compact
subset of D. The poles of [m/n] approach the poles of f as m tends to
infinity.

This result is optimal since, if there is a pole on the boundary of Dg, then
divergence of the sequence R,, ,, occurs outside C — D as proved by Wallin
(1987).

Let us now have a look at some simple examples to illustrate the dif-
ferent aspects of the result. The computations have been conducted with
Mathematica and they are given up to the first inexact digit with at most 9
digits.

First of all, the convergence to the poles is obtained with a speed of con-
vergence that is O(r/R), where r is the modulus of the pole to be computed
and R is the radius of the largest disc of meromorphy of the function, or
O(r) if the function is meromorphic in the whole plane.

For the function sin z/(z—1)(z—2)(z—3), we obtain the following results,
where the various columns represent the three zeros of the Padé approximant
[n/3] (up to the first inexact digit).

[n/3]
3 [0.991 2.3 -0.5
5 | 1.0006 1.92 0.2
7 | 1.000001 1.996 —4.
9 10.99999991 | 2.001 2.6
11 | 1.000000000 | 1.99997 3.02
13 | 1.000000000 | 2.0000004 2.9989
15 | 1.000000000 | 1.999999994 | 3.00003
17 | 1.000000000 | 2.000000000 | 2.9999990

Now, let us consider the function log(a + 2)/(1 — 23). Here R = |a| and we
take a = 1.1 and a = 3. The two conjugate poles are in the same column.
The convergence is, of course, much better for the last two columns which
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correspond to a = 3.

[n/3]
1 (11 |-.59 £.71i |1.01 —.48 +.851
3 |1.06 |—-.52 =£.91i | 1.0005 -.501 +.8651
5 11.04 |44 £.84i | 1.00004 —.499992 +.86611
7 |1.02 | -.52 +£.84i || 1.000003 —.499994 +.8660211
9 |1.01 |—-.504 £.88i [ 1.0000003 |—.5000005 =+.8660251i

11 |1.01 |—.49 =.8601i] 1.00000003 |—.499999993 +.86602546 i
13 11.007| —.508 £.8581 || 1.000000003 | —.499999995 +.8660254001

Let us finally consider the function 1/ cos z, which has an infinite number
of simple poles. Although the theorem concerns the columns, this example
shows that it is possible, in some cases, to obtain approximations of all the
poles using the diagonals (only the positive poles are given).

R
2 1.54
4 1.57082 4.4
6 1.570796320 | 4.72 6.9
8 1.570796327 | 4.71231 8.0 9.0
exact | 1.570796327 | 4.712388981 [ 7.8539 | 10.9955

Montessus’s theorem provides a result only if the exact number n of poles
is known and only for the column sequence ([m/n])m>0. The poles of f
serve as attractors for the poles of [m/n|. But if f has less than n poles,
then only some of the poles of [m/n] are attracted and the other ones may
go anywhere, destroying the convergence. If another column is considered,
no result can be obtained as can be seen from counterexamples. The first
one, due to Bender and Orszag (1978) and already quoted above, concerns
the series f(z) = (10+2)/(1 — 22) where the first column ([m/1])m>0 cannot
converge.

Taking into account the last counterexample (due to Perron (1957)), and
coming back to a meromorphic function with n poles, it is now obvious that
it is impossible to obtain a convergence result for all the sequences ([m/k])m
with k smaller or greater than n. It is a conjecture, made by Baker and
Graves-Morris (1977), that at least a subsequence of ([m/k])m>0 converges
for kK > n. Such a result was proved by Beardon (1968) for the column
sequence ([m/1])m>0:

Theorem 2.4 Let f be analytic in |z] < R. Then, for r < R, there exists
a subsequence of ([m/1])m>0 converging uniformly to f in the disc |2z| < 7.

The same result has been proved by Baker and Graves-Morris (1977) for
the second and third columns. Buslaev, Gonéar and Suetin (1984) estab-
lished the conjecture for entire functions. For R < oo they showed that the



76 C. BREZINSKI AND J. VAN ISEGHEM

conjecture is still true in a neighborhood of zero and they gave a counterex-
ample for the whole disc.

2.8. Stieltjes series

The main references for this section are Baker (1975) and Baker and Graves-
Morris (1981). The complete proofs are given in the last reference. A study
of the subject can also be found in Karlson and Von Sydow (1976).

A Stieltjes series is a power series of the form

Se) =X f(-2) with fi= [ aidp(a),
1=0

where ¢ is a positive, bounded, non-decreasing measure. The Stieltjes func-
tion associated to the Stieltjes series is

=" delz)

1422

So, the series S is the formal expansion of f into a power series, although
this series may not converge except for z = 0 while the function is analytic
in the cut plane C — (—00,0). This is, for example, the case for the Euler
series

% gt dt 2 n
z)= — S(z)= nl(—z)".
@)= Trg S@ =2
An important question is the moment problem, i.e. the existence and
uniqueness of f corresponding to the moments f;. If ¢ takes only a finite
number of values, it is a step function: ¢ is constant on (u;, u;+1) for a finite
number of u; and so

p Az
f(Z):zl:]."'ZU»L
To avoid this too-simple case, ¢ is assumed in the sequel to take an infinite
number of different values.
The particularity of Stieltjes series is that the special form of the coeffi-
cients f; allows us to study the corresponding Hankel determinants and thus

to locate the zeros of the orthogonal polynomials P,(Lm) where
Dun(z) = 2"P{M(1/2)

is the denominator of [m +n — 1/n].

So the most natural sequences to be considered are the paradiagonal se-
quences ([n+ J/n])n, J > —1. From the first section we know that for each
J the P**/(= P,) satisfy the three-term recurrence relation

Pn+1(.’L') = (x - ﬂ:zH-J)Pn(x) - 71?+JPn—1(x)’
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,777114-]_ n/hn—lah _C(J 1)(P2) (J 1)( npn) J 1)/H(J 1)

It can be proved that all the Padé approximants exist for m > n — 1. So

the Padé table is normal. Then, in the recurrence relation of Pr(lm), all the

Yot are positive. From the theory of orthogonal polynomials, it means that
(

each diagonal sequence ( nm))n, m fixed, is orthogonal with respect to a
positive-definite functional. So P,(Lm) has n real distinct zeros and the zeros
of P{™ and P +i interlace. We have the following theorem:

Theorem 2.5 All the zeros of P,(Lm) are real, distinct and negative, for
m>n—12>0.

Let us now consider the convergence of paradiagonal sequences. As Pn(m)
has n simple negative zeros «;, the denominators D,,, have also n simple
negative zeros 1/a;. Thus, all the poles of the Padé approximants ([n +
J/n])n lie on the cut and there is no obstacle to the convergence in the cut
plane C — (—o0,0].

We have the following theorem:

Theorem 2.6 Let D(A,r) = {z € C,|2|] < r and Vz < 0,d(z,z) > A}
Then, for each J > —1, the sequence ([n + J/n]), converges uniformly on
D(A,7) to a function f7 analytic in the cut plane C — (—o0, 0].

If the moment problem is determinate (i.e. if there exists a measure <p
such that for all ¢ the coefficients f; of f are given by f; = [« xtdo(x
then all the f are identical to f. The problem is known to be determlnate
if the Stieltjes series has a nonzero radius of convergence R, or if R = 0 and
the fi’s satisfy Carleman’s condition: 3 ;~,(f;)~1/% diverges.

For the Euler series, Carleman’s condition is satisfied since

Z(l/n!)l/% is equivalent to Z(l/n),

n>1 n>1
which diverges, and so the last theorem holds for the Euler function

o e~tdt
1z) :/0 14tz

For such sequences, Padé approximants can be useful for reconstructing
the function from its power series expansion.

In the case of convergent Stieltjes series of radius R, the last theorem can
be put into a more precise form due to Markov (1948):

1/R
Theorem 2.7 f(z) = dcp(ui is analytic in the cut plane C — (—o0,

0
—R]. All the poles of [n + J/n] lie in (—oo, —R]. The convergence of the
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sequence ([n + J/n]), is uniform in D*(A,r), where
DY(A,r) ={z,|z| < r,Vz € (—00,—R],d(x, 2) > A}.
A convergence result has also been proved by Prévost (1990) for the prod-
uct of two Stieltjes functions:

0 dB(z)

e da(z)
Theorem 2.8 Let f(z) = / and g(z) = ———= where a and
o 1—z=z b1l—2xz

b are finite and positive, and let « and 3 be (})ositive, bounded and non-

decreasing measures. Let also the integral [~, [ ;2= da(z)dB(z) be as-

e d
sumed to exist. Then f-g(z)= / 1—7(;% is a Stieltjes function, and
b 1-

the sequence ([my + J,mglf.g)m, (J = —1 and limg_,oo my = +00) of
Padé approximants of f - g converges uniformly on every compact subset
of C — ((—o0, b~ U[a L, 4+00)).

3. Generalizations

There exist many generalizations of Padé approximants. First of all, it is
possible to define rational approximants to formal power series where the
denominator is arbitrarily chosen and the numerator is then defined in or-
der to achieve the maximum order of approximation. Such approximants
are called Padé-type approrimants. Their definition was given in the first
section and we shall study below some of their convergence properties. In
rational approximants, it is also possible to choose only a part of the de-
nominator or a part of the numerator and the denominator. These are the
partial Padé approrimants. Such generalizations allow us to include into the
construction of the approximant the information that is known about the
zeros and the poles of the function being approximated, thus often leading to
better convergence properties. Multipoint Padé approrimants have expan-
sions around several points which agree with the expansion of the function
around the same points up to given orders. Padé approximants for series
of functions have also received much attention. Other generalizations deal
with Padé approximants for double series. Another important generalization
is the vector case, which will be studied below. Series with coefficients in
a non-commutative algebra have also received much interest, in particular
the matrix case, due to their applications. Other types of approximants,
such as the Cauchy-type approrimants or the Padé-Hermite approxrimants,
have been defined. It is, of course, possible to study combinations of these
various generalizations such as the multipoint Padé-type approximants for
multiple series of functions with matrix coefficients. Due to the space limi-
tation of this article, we shall only present Padé-type approximants and the
vector case and refer the interested reader to Brezinski and Van Iseghem
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(1994) where more details about these generalizations can be found with
the relevant references to the literature.

3.1. Padé-type approximants

As we saw in the first section, the function f(z) = },5¢cn2" completely
defines the linear functional ¢. It always has an integral representation in
the complex field as stated by the following theorem:

Theorem 3.1 Let R be the radius of convergence of the series f and H,
the space of holomorphic functions in the disc D; . Then ¢ has the following
representation

1

Vg € Hay c(g)= 5

/mzrf(x)g(l/a:)i—x, a<r<R

In fact, in practical situations, the contour can be transformed continu-
ously in such a way that f(z)g(1/x) remains holomorphic in a neighborhood
of it. An application of this result is the representation of the remainder
term of Padé or Padé-type approximants f(z) — Pr—1/Qn(%2).

flz) = chz”, f)n(z)=z"vn(z_l),

n>0

fz) = c(l-lxz>’ <(9) 27r1/f 1/33
z

f@)-ep) = Fse(P )= ot | f(x)%dx
Sl ml) S,

271 J_o-1 vp(z7Y) (1 — z2)

Finally, using the notation of Cala Rodriguez and Wallin (1992), condi-
tions on I' = —C~1, f and v, are now summarized, with v,(z) = Qn(z) =
[T7=1(1 — Bjnz), which means that the 8;, are the poles of the approximant
whose denominator is Qn(2) = [} (2—Bj») and the following error formula
is obtained.

Theorem 3.2 Let f be analytic in a domain D containing zero let Bjn,1 <
j<n,n>1, be glven complex numbers and let z € D — {8, } Let T" be
a contour in D! consisting of a finite number of piecewise continuously
differentiable closed curves with index

. 1 ifaeC-D7,
indr(a) = { 0 ifa=z"12#0.
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Finally, let P,_1/Q, be the (n — 1/n) Padé-type approximant of f with
preassigned poles at the zeros of Q. Then

1
/ Qn t(1 —)zt) dt

Let us now formulate the theorem of Eiermann (1984) in the form he
proved it (for a complete and detailed proof, see Eiermann (1984) or Cala
Rodriguez and Wallin (1992)).

fz) -

Theorem 3.3 Let f be analytic in a domain D C C containing zero. Let
Bin, 3 = 1,...,n, be the given zeros of Q,, and let A C C? containing
C x {0} and such that, uniformly for (z, z) in compact subsets of A,

_Qn(z)

lim ————— =
n=% Qn(z71)
Then, the sequence of Padé-type approximants P,_1/Qn converges to f
uniformly on compact subsets of A = {z, V€ € C/D, (£71,2) € A}.

If f is a Stieltjes function defined on C —(—o00, —R], then K = C—-D~! =
[-1/R,0], and T is any contour containing K. The best choice is to take
I' as small as possible, and the assumption on @, becomes, for z in some

compact subset F’ of D, lim sup sup Qn( )
o0 cFzeK Qn( )
the following alternative results. With the same notation as before, we get:

= (. This remark leads to

Theorem 3.4 Let K = C/D™!,0 a neighborhood of K and F some com-
pact subset of D. If
. Qn n-l(z) _
lim ( sup ‘ D 0, then lim ( max ‘f 0u2) D =

00 N (1,2)€OXF n—oeo

Similarly, we have the following theorem:

Theorem 3.5 Let K = C/D™!,0 a neighborhood of K and F some com-
pact subset of D. Then for the sup norm on F (z € F), if

P,_1(z n
M

If the Q,’s are some orthogonal polynomials for which asymptotic formu-
lae are known, the preceding theorem leads to interesting results (Prévost,
1983).

Another idea is to take @, with one multiple zero, so that IQn(a:)|1/ "=
|z — Bn|. Two cases are to be considered: the first one with 3, = § or
lim,, 8, = B (which gives the same rate of convergence), the second one with

oy

n—o0

0 | Qn( zt)l) Hl/n) <r < 1,then E@(Hf(z) -
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Brn depending on n (and which may tend to oo) in the case of entire functions
having one singularity at +o0o and none at —oo such as the exponential
function (Van Iseghem, 1992; Le Ferrand, 1992b).

3.2. The vector case

e Introduction

There are at least two ways for obtaining approximations for vector prob-
lems.

The first one consists in considering simultaneously d scalar functions de-
fined by their power series expansions in a neighborhood of zero, organizing
them as one power series with vector coefficients in € and then looking
for a rational approximation following the idea of Padé approximation, that
is, finding a best approximant. This approach has been developed through
the simultaneous approximants by de Bruin (1984) and through the vector
approximants by Van Iseghem (1985, 1987b). In each case, the result is
a rational approximant (P;/Q,..., P;/Q). In the vector case, all the P;’s
have the same degree while they have to satisfy some constraints in the si-
multaneous case. Although the ideas are rather similar, the approximants
are not the same, except when deg Q) = nd anddeg P, =n, i=1,...,d. In
both cases, the scalar Padé approximants are recovered if the dimension d
of the vectors is one. Only the vector case, which seems to be simpler, will
be explained here.

The second way for obtaining vector approximations is through extrapola-
tion and acceleration of vector sequences. In the scalar case, the e-algorithm
provides a way for computing Padé approximants and such a link can also
be developed through the vector e-algorithm or the topological e-algorithm,
as we shall see below.

o Vector Padé approzimants

For vector Padé approximants, giving m as the common degree of all
the numerators P; and n as the degree of the common denominator () de-
fines completely the approximant. The vector Padé approximant R(t) =
(Pa/Q)a=1,..,d is the best in the sense that it is impossible to improve si-
multaneously the order of approximation of all the components.

Let F = (f1,..., fq). If, for each @ = 1,...,d, we write

fa(z) = Z 2,

>0
then we set T; = (c}, ... ,c?)T € C¢ and we define the series F by
F(z) = ZFizi.

120
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Let T': C[[z]] — C¢ be the linear functional defined by
I(z%) =
Taking the components of the vector approximant as the Padé-type approx-

imants of the f,’s, we get the following theorem:

Theorem 3.6 Let P be the Hermite interpolation polynomial of 1/(1—zz)
at ry,...,Zn. Setting

n

v(z) = H(m - z;), o(t) = t"u(t™Y), W(z) =T (v(z) - U($)> ,

i=1 Z-z

where the functional T acts on z, we have ['(P) = W(z)/(z), and

F(z) - T(P) = zn)r ( v(z) ) ZD Z,  D;=T(z'v(z)).

(2 1—-zz z>0

W (z)/(z) is called the Padé-type approzimant (n — 1/n) of F.

The proof of this result is similar to that of the scalar case because
each component (W(z)/V(z)) is the Padé-type approximant of f, for
a=1,...,d.

In order to improve the order of approximation on all the components,
we have to choose the polynomial v such that a maximum number of D;
are zero. D; is a vector of C% and so D; = 0 represents d scalar equations
with the coefficients of v as unknowns. Thus, n being the degree of the
denominator, the best order of approximation by rational functions of type
(n —1,n) is n+ [n/d], where [n/d] is the integer part of n/d.

Padé-type approximants (s/r) for arbitrary degrees s and r can be defined
as for the scalar case. For any integer h, positive or not, we get

h—1
= T2 +Fu(z), Ti=0 if i<,
=0
h—1 )
(r+h—=1/r)p(z) = Z Izt + (r = 1/r)F, (2).
=0

The order of approximation is 7 + h — 1. It can be increased up to r + h —
1+ [r/d] by choosing the generating polynomials v of the vector Padé-type
approximants. Let 7 and h be arbitrary integers (r =nd+ k, 0<k <d);
let us denote by I'®) the linear functional defined by I'®)(z?) = T';, ) and

by P dl—k the polynomial defined by the following equations:

(@ P®) () =0,

(3.1)
c(x "+thd+k(a:)) 0, a=1,...,k

|I

-

Il

L

3

\.b—‘
——
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The Padé-type approximant (r+h—1/r) generated by P! dir i Will have the
maximal order of approximation: the order of approximationis r+h+n—1
at least, r + h + n for the first k¥ components. This approximant will be
called the vector Padé approzimant [r + h — 1/7]p.

Writing the conditions (3.1) as a linear system, we get an expression of

T(h) as a ratio of two determinants. As usual the determinantal expression

for Pr(h) gives rise to a determinantal expression for the vector Padé approx-
imants where only the last row of the numerator is a vector, all the other
rows (I';,...,T,4;) being put for d scalar rows and the last one (Ffﬂh, o)
representing the first k¥ components of (I'y4p,...). Setting s = r + h and

k= Zf:o ;2% we have

r, - T, r, - T,
l—‘n(—l)+h v Fn—({;cs) 1 1_‘h—(f—kn) 1" Fn—};cs)—l
k
Fn+h e FTH-S th)%—n ;n+s
1 - o ST
P () = 1 _
v (@) T, --- Tsq | [s —1/rlp(2) T, .. T,
Fh?—}g_l o F?]:)-snl Fg:zn T Fglk—{)—s
Pn+h e I1n+s—1 2 -1

Similarly to the scalar case, the polynomials (Pr(h))rzo are the generating
polynomials of [h+7—1/r], and for each h they satisfy a recurrence formula,
which, here, is of order d + 1 (i.e. with d + 2 terms):

21 (z) = (@ - B)PS(a }:vzps (3.2)

If all the Pr(h) exist, then the last coefficient 'yg is not zero. Since a theory
analogous to the theory of orthogonal polynomials can be developed, these
polynomials have been called vector orthogonal polynomials (or of dimension
d) (Van Iseghem, 1985, 1987b, 1989). A Shohat-Favard theorem can be
proved: given a family (P,),>o satisfying the the relation (3.2), there exist
d functionals c!,...,c% such that the P,’s satisfy the relation (3.1) with
respect to I' = (c!, ..., c?). The space of all possible I'’s is a vector space of
dimension (d!). And so there is, as in the scalar case, an equivalence between
the vector orthogonality defined by the relations (3.1) and the family of
polynomials defined by the recurrence relations (3.2).

From an algorithmic point of view, a QD-type algorithm linking two di-
agonals (Pp (h )) and (PT(hH))T can be defined. It allows one to move in all
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directions either in the table of the polynomials (Pr(h)) or in the table of the
vector Padé approximants. The approximants can be also computed by al-
gorithms such as the recursive projection algorithm (R.P.A.) or the compact
recursive projection algorithm (C.R.P.A.) of Brezinski (1983b).

An example of an algorithm deduced from the recurrence relations in the
table of the polynomials is the generalization of the cross rule of Wynn
obtained by Van Iseghem (1986). In the scalar case, this cross rule involves
five approximants in the following array:

N
W C FE
S

and it can be written in two different forms

(E-N)(C-W)(5-C) = (C-N)E-C)(S—-W),
1 1 _ 1 1
c-N'T-s T c_ECcw
The proof can be extended to the vector case. The approximants involved
are the following: W; and N; lying on diagonals and

Wq Ny
N N
W, C E
S

The explicit form is given for all the components (E - C)*, a =1,...,d, the
D; being d x d determinants and the vectors indicated being the columns of
the determinants

D1 =|C-W1,Wy—Wy_1,...,Wo—W1|,Dy=|S—C, Ng_1—Ng_2,...,N1-C|,
D3= IS_le Wd_Wd—ly oo 7W2_WII$D4=|C_N7 Nd—l_Nd—Zv cee 7N1—C|7

1 1 1 D3Dy

= =].... .
(E=C) T {C=N@ ~ ([©=NpDD, &~ b

As in the scalar case, symbolic negative columns are defined so that the
algorithm can be used with the center term C in the column with subscript
zero. So this algorithm can be used for computing F from the first column
and it gives all the approximants [p/q] with p > ¢ — 1.

Vector Padé approximants can be used for accelerating the convergence of
vector sequences. Let F = 3,5, T;2°. Then, a vector sequence (S,) can be
canonically associated to F by taking I'; = AS;. Thus S, is the nth partial
sum of the series F(1) and the vector Padé approximants are associated to
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a transformation of sequences. By combining the rows in the determinantal
expression of the vector approximant of F it follows that

S .. Shir
AS, - ASu
ASh-({-IS—l ce ASh-(é-kr)—{—n—l
AS <o AS
[r+ h/rlr(1) = ¥r(Sh) = 1h+" — hl+r+"
AS, -+ AShy,
ASh—(}-’:z—l st ASh-(l—}:+77.—1
ASh-zn T ASh—z'r—}—n

The first row is formed by vectors and the following rows stand for the d
rows of their components except, as usual, the last one which contains only
the first & components.

The basic result is the following theorem.

Theorem 3.7 A necessary and sufficient condition for ,.(S,) = SVn is
that the sequence (Sy,) satisfies a linear recurrence relationship, that is, Vn

T T
Zai(S,H_i —8)=0, with Zai #0, a;€C.
i=0 =0

In the scalar case, Aitken’s A2 process is recovered for » = 2 and the
Padé table, Shanks transformation and e-algorithm for » > 2. If d # 1 and
if r < d, we recover the MPE (Minimal Polynomial Extrapolation) algo-
rithm studied by Sidi, Ford and Smith (1986). For r = d, a transformation
due to Henrici (1964) is obtained. For r > d, the transformation does not
seem to have been studied yet independently from the vector Padé approx-
imants (Van Iseghem, 1994). Graves-Morris (1994) defined another kind of
approximants, also called vector Padé approximants, different from those
studied below, which are generated by the vector e-algorithm.

From the relation of the theorem above, it is clear that the results of
this extrapolation method are to be linked with those of other extrapolation
methods such as the vector e-algorithm or the topological e-algorithm.

o The vector -algorithm
The rule of the e-algorithm is

n +1 +1 ~1
ey = el 4 [ o)

with 5(_111) =0 and 5(()”) = Sn.
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Now, if S, is a vector of CP, the preceding rule can be applied if the
inverse of a nonzero vector y is defined. Using the pseudo-inverse of the
rectangular matrix y, Wynn (1962) took y~! = y/(y, y). For this algorithm,
the following result holds.

Theorem 3.8 A sufficient condition for eg,z) = SVn is that Vn,
aO(Sn - S) + 4+ ak(Sn+k - S) =0

with ag + - - - + ax # 0 and agay # 0.

This theorem was first given by McLeod (1971) in the case where the a;’s
are real numbers. The full proof was obtained by Graves-Morris (1983) for
complex coefficients. Contrary to the scalar case, only the sufficiency has
been proved. The theory of this vector e-algorithm and its applications were
based only on this theorem and other results about it were quite difficult
to obtain (see, for example, Cordellier (1977)). This was due to the nonex-

istence of determinantal formulae for the vectors El(cn)' It has been proved
by Salam (1994) that these vectors can be expressed as a ratio of two des-
ignants, a notion generalizing that of determinants in a non-commutative
algebra. This approach should lead to new theoretical results about the
vector e-algorithm.

e The topological e-algorithm

A drawback of the vector e-algorithm was its lack of determinantal expres-
sions for the E}C"), due to the fact that this algorithm was obtained directly
from the rule of the scalar e-algorithm, by defining the inverse of a vector.
Thus a possible remedy was to construct-a vector-sequence transformation
following the ideas of Shanks (1955) for the scalar case and then to obtain a
recursive algorithm for its implementation following Wynn (1956). We start

by assuming that the sequence (S,) satisfies Vn,
ag(Sn — S) +-+ ak(Sn+k -8)=0.

Since, as above, it is assumed that ag + - - - + ax # 0, it is not a restriction
to set this sum to 1. Thus we have Vn,

S = a()Sn +---+ akSn+k.

For computing the a;’s, we subtract this relation from the next one and
multiply it scalarly by an arbitrary vector y. Thus for i =0,...,k — 1, we
have

ao(y, ASnyi) + -+ + ar(y, ASnyitk) = 0.
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Solving this system provides the a;’s and S. If we set

Sn cae Sn+k
(ya Asn) tre (yv ASn—Hc)
1) o (4, ASnion
e(Sy) = (¥, Asln+k 1) (y, 51+2k 1) ,
(ya AS’n) T (ya AS’n—i—k)
(ya ASn-Hc—l) T (y; ASn—+—2k:—1)

then, by construction, we have Vn, ex(S,) = S if the sequence (S,,) satisfies
the relation given above. If the sequence does not satisfy such a relation,
then the determinants appearing in the expression of ex(S,) can, however,
be computed (the determinant in the numerator denotes the vector obtained
as the linear combination of the vectors in its first row given by using the
classical rules for expanding a determinant), and ey (Sy,) is a generalization
of the Shanks transformation and Padé approximants. Now, from a practical
point of view, it is necessary to find an algorithm for computing recursively
the vectors ex(Sy) without computing explicitly the determinants involved
in the formula. This algorithm was called the topological e-algorithm. Its

rules are the following (Brezinski, 1975), with 5(") =0 and s(n) Sp:

(n) (n+1) Yy
€ = ¢ +
. . (v, 5§Z+1) 52k))
+1 )
L AR
+ +1 +1 ‘
(§Z+1) 5&211»552 : Eé’é))

The topological e-algorithm can be considered as the construction of Padé
approximants in the direction of y. If d independent directions are chosen
and if the rows ((y, ASp+i),...),i =0,...,k— 1, are replaced by the d rows
((yi,ASp),...),i = 1,...,d, then the vector Padé approximants (or more
exactly ¥x(Sn)) are recovered. For k = d + 1, Henrici’s transformation is
obtained.

All these algorithms are, in fact, constructed from the same idea which
is that of Padé approximation of achieving the maximum degree of approx-
imation at zero. So, as we shall see in the next section, they have similar
properties for their applications, for example, in solving systems of linear
and nonlinear equations.

4. Applications
Other applications can be found in Cuyt and Wuytack (1987).
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4.1. A-acceptable approximations to the exponential function

Let us consider the differential equation y'(z) = —Ay(z) where X is a com-
plex number whose real part is strictly positive. Thus the solution will sat-
isfy limg—oo y(z) = 0. This differential equation (with the initial condition
y(0) = yo) is integrated by a numerical method that computes approxima-
tions y, of the exact solution y(nh), where h is the step size. This numerical
method is said to be A-stable if YA such that Re(hA) > 0,limp 00 yn = 0,
which means that both the exact and the approximate solutions tend to zero
at infinity.

Of course, since the exact solution is y(z) = yoe™*%, we have y(zn41) =
e "y(zr,) with x, = nh. When using either a one-step or a multistep
method, it can be proved that the approximate solution satisfies

Ynt+1 = r(h/\)yn,

where r is a rational function. Thus, if the numerical method has order p,
we have

r(z)=e 7+ O(z”“) .

Moreover, if the method is A-stable we must have, Vz such that Re(z) >
0, |r(2)| < 1 since yn = [r(hA)]yo.

Such a rational approximation to the exponential function is called A-ac-
ceptable and, of course, Padé, Padé-type and partial Padé approximants are
candidates for such an r.

Using the maximum-modulus principle it can be shown that r is A-
acceptable if and only if V¢ € R,|r(it)| < 1,limj, o0 |r(2)] < 1 and 7 is
analytic in the right half part of the complex plane; see Alt (1972).

The A-acceptability of Padé approximants to the exponential function
was studied by Ehle (1973) who proved:

Theorem 4.1 The Padé approximants [n/n],[n — 1/n] and [n — 2/n] of
e ? are A-acceptable for all n.

Let us now turn to Padé-type approximants. The following result is an
adaptation of that of Crouzeix and Ruamps (1977) for rational approximants
to the exponential function.

Theorem 4.2 Let r be a Padé-type approximant of e~ # with real coeffi-
cients, whose numerator has degree & and whose denominator has degree
n+k (n>0). Let

12 1+ Grt? + - + Byt
|r(it)|* = 5 T
1+ a1t + - + anxt2 k)

If the zeros of the denominator of r have negative reals parts, if 3; < o
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fori = [k/2)+1,...,kand if 0 < @; for i = k+1,...,k + n, then r is
A-acceptable. ([z] denotes the integer part of the real number x.)

When solving a parabolic partial differential equation of the second order,
one obtains, after discretization of the space variable, a differential system
of the form

Cu'(t) = —Au(t)+v(t),
u(O) = Uup,

where C' and A are real square matrices whose elements are independent of
the time ¢. Using a one-step method for integrating this differential equation
leads to Qk(Bh)un+1 = Pm(Bh)uy, + T, where, B = C'A Ty, is a matrix
depending on k and m, u, is an approximation of the exact solution u(t,) at
the point ¢, and @ and P,, are matrix polynomials of the respective degrees
k and m. As before, [Q(Bh)]~! P,(Bh) must be an approximation of e~B"
and the order of the method is determined by that of the approximation.
This approximation must be A-acceptable if an A-stable one-step method
is needed. The computation of u,4+1 from u, requires the computation of
the inverse of the matrix Qx(Bh). This computation is greatly simplified if
Qx(2) = (1 + ax2)*. Indeed, in that case, the computation of u,,1 reduces
to the solution of k systems of linear equations with the same matrix

(I +oxBh)vpr1 =vp, p=0,...,k — 1, v9g = Pr(Bh)un + Tn, vk = Un+1-

Of course, such a simplification is impossible with Padé approximants but
it becomes possible with Padé-type approximants. For convergence reasons,
since limy_oo(1 + 2/k)¥ = e* we shall make the choice a;, = 1/k which
corresponds to the generating polynomials vg(z) = (z+1/k)*. The following
result can be proved:

Theorem 4.3 The Padé-type approximants (k — 1/k) of e™# constructed
with the generating polynomials vx(z) = (z + 1/k)* are A-acceptable for
k =1,2,3. The Padé-type approximants (k/k) constructed with the same
generating polynomials are A-acceptable for k¥ = 1,...,4. (6/6) is not A-
acceptable.

The study of the convergence of these approximants is due to Van Iseghem
(1984) who proved the following results:

Theorem 4.4 The sequences ((k — 1/k)) and ((k/k)) of Padé-type ap-
proximants to exp(—z) constructed with the generating polynomials v (z) =
(z + 1/k)* converge to exp(—z) uniformly and geometrically on every com-
pact subset of the complex plane.

Complementary results on the A-acceptability of Padé-type approximants
with a single pole were given by Gonzélez-Concepcién (1987). See Wanner
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(1987) for a review on the A-acceptability of Padé approximants to the
exponential function.

4.2. Laplace and other transforms

In this section, we shall show how Padé approximants can be used in the
numerical solution of problems related to the Laplace, the Borel and the
z-transforms.

The Laplace transform of a function f is defined by

o = [ e s,

The Borel transform is a Laplace transform, B(z) = f(1/z), and the z-
transform is a discrete equivalent of the Laplace transform, as will be shown
at the end of this section.

The Laplace transform is used in several cases: if f satisfies a functional
equation, f satisfies a simpler one which can be solved more easily. For
example, a linear ordinary differential equation is replaced by an algebraic
equation, a linear partial differential equation is replaced by an ordinary dif-
ferential equation and so forth. For example, the partial differential equation

02 02 1/0 0 m?
(m‘zmﬁ(&‘%) _W>R(“)_O

is transformed, with respect to x, into

8 (1 o _(p,.m\\z . _
(W_'— (;—2]7) 5’;_ (;‘FF))R(p,T)'—O'

The problem is to find f(¢) from f(p). It requires the construction of
approximate methods for computing inverse Laplace transforms that permit
us to find the original function in a broad class of cases.

It must be noticed at once that the problem is always unstable: if f(p) =
1/(p — @), then f(t) = e®t. So if there is an error in «, of say ¢, then there
is an amplification of the error: f. = e f. Conversely, if f is modified on a
small interval, then f will have a very smooth change.

An extensive literature exists on the subject and on the different methods
for inverting the Laplace transform. A review can be found, for example, in
Luke (1969). We will only discuss here the problem of inversion by use of
rational approximants.

In many applications, one knows explicitly f(p) and one wants to find f(t)
numerically. One way of obtaining approximations to the inverse f(t) of f(p)
is by approximating f(p) by a sequence of rational functions f,(p), n > 1,
and then inverting the f,(p) exactly to obtain the sequence f,(t), n > 1.
The hope is that, if the sequence (f(p))» converges to f(p) quickly, then the
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sequence ( f,,(t)), will converge to f(t) also, more or less quickly. There are
several ways of obtaining rational approximations to a given function, one of
them being by expanding it into a Taylor series, and then forming the Padé
table associated with the Taylor series. Detailed discussions and references
to various applications can be found in the paper by Longman (1973).

The link with Prony’s method (interpolation by a sum of exponential
functions) has been generalized by Sidi (1981).

If f.(p) has n poles, not necessarily distinct but of multiplicity n;, with
> 1'ni <n, then

_ m o n A m n; -
fu(p) = ZZ m & folt) = ZZAijt] Loait
i=17=1 i=1j=1

So the problem is the approximation of f(¢) by functions of the same type
as fn(t). The result proved by Sidi is as follows:

Theorem 4.5 Define the set GG, as

m n _ m
G, = {g(t) = ZZBijtj_leait, o; # Qaj, Zni < n,Bij S (C} .
1

i=1j=1

Now, let g,(t) be the function, if it exists, belonging to G, that approximates
f(t) in [0, 00) in the following weak sense:

/ Ve (F(2) = ga(t))tidt =0, i=0,...,2n— 1.
0

Then g, (p), the Laplace transform of g, (t), is the Padé approximant [n—1/n]
of f(p — w). Furthermore, g,(t) is a real function of ¢ if f(p) is real for real
.

As seen before, Padé-type approximants can give better numerical results
than Padé approximants if some information about the poles is known. Var-
ious investigations have been conducted in the past ten years concerning the
convergence of methods using Padé or Padé-type approximants.

One research path, followed by Van Iseghem (1987a), is through orthog-
onal polynomials and Padé-type approximants with one multiple pole. The
basic remark is the following one, due to Tricomi (see Sneddon (1972)),
about the Laguerre polynomials of order zero:

F(t) = X Ly(2Xt) & f(p) = =N
(p + A)F+1
So, the Laplace transform formally achieves a correspondence between a
series in powers of (p—A)/(p+ ) and an expansion in Laguerre polynomials.
Convergence in the least-squares sense is to be expected for (f,), but better
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results are obtained. We have
_ Y (= A\F

The partial sum fn(p) of this series is the (n/n + 1) Padé-type approximant
of f(p) with denominator (p + A)**1. If f(p) = T;50ci(p — A)Y, then the

ar’s are easily computed:
k
E (8o
i=0

The following results are obtained:

Theorem 4.6 Let us assume that f is analytic in the half plane Re(p) > 0,
f(t) exists and [5° f2(t)dt < co. Then the sequence (f(p)), converges to f,
uniformly on every compact set of the half plane Re(p) > 0. The sequence
(fn(t))n converges to f in the least-squares sense. Furthermore if (p+ ) f(p)
is analytic at infinity and if f(p) is analytic in Re(p) > 0, then the sequence
(£ (t))n converges to f(t) uniformly on compact sets of RY.

This theorem can be improved in two directions:

e f is analytic in Re(p) > w (instead of w = 0);

o (p+ A)f®)(p) is analytic at infinity (instead of k = 0).

With the first assumption, we get the following sequence (h,(t)):

(o o]
hnt) = (0=t Za L), lim [ ke (f() - ha(t)Pdt =0
With the second one, the same sequence converges uniformly to f on com-
pact sets of RY.

The idea is to obtain a quickly decreasing sequence a;(A), and the com-
putations are very sensitive to that choice, even if the theoretical results are
not. The choice of A must be made in order to speed up the convergence of
the power series Eaiu’ (i.e. the convergence of f,(p) to f(p)). Let

i>0

p—A

=o' p+NE) =plw), =225
The singularities of ¢ are (o — A)/a + A) with « a singularity of f. So Ry,
the radius of convergence of ¢, is Ry = 1/(max;|LA;|) with L being the
point represented by the complex number 1, and A; being represented by
2A/(XA — ;). So, the best A is obtained by minimizing max; |LA;|. Compu-
tations have been made and compared with those of Longman (1973) using
Padé approximants. For the examples studied (with poles, branch points or
isolated essential singularities) they give better results.



A TASTE OF PADE APPROXIMATION 93

Let us now summarize two examples: the first one shows the improvement
due to the choice of A for the approximant F»(t) (the case A = 1 has been
obtained by Ward in Sneddon (1972) and the exact inverse F(t) = et —e™2
is known); for the second example the results are obtained with the weight
function, depending on k, t?%¢ =2kt the choice of A being optimal. The last
line of each array contains the exact results when known.

fe)=1/(p+1)(p+2) f(p) = (1/p)In(1 + p)
N1 (=1 =1 [ =05
5 —3oas 356 | | L | 013179 | 049133 | 558368
3| .013044 | .048899 | .559835
1.2 | .0179797 | .2325430 | .2386533
5| .013048 | .048900 | .559787
1.4 | .0179802 | .2325440 | .2386513
TR0 ssos it sl 7| 013054 | 048897 | 550662
: : : 048900 | 559773

It is obvious that for such unstable problems, no single method will give
optimal results for all purposes and all occasions.

As the Borel transform is also a Laplace transform, Padé and Padé-type
approximants can be used for its inversion, as explained by Marziani (1987).
Let us first recall the basis of the Borel method, namely, the Watson—
Nevanlinna theorem:

Theorem 4.7 Let o« > 0, R > 0 and A > 0 be given. We set D, g =
{zeC,0< |2| < R,|arg 2| < a+7/2}, Toa = {2z € C,|2| <1/A}U{z €
C,|arg z| < a}. Let f be analytic in Dy g and continuous on D, g and have
there the asymptotic expansion f(z) = Y nogcnz™ (2 — 0). We assume
that there exists C > 0 such that Vz € Dy gp and VN

lf(z chz <C'(N+1) ANFL )N+
o= Cn
Then the Borel transform series B(z) = Z mz” converges in {z € C, |z| <
n=0 """

1/A}, B(z) has an analytic continuation g(z) in Ty 4, the integral F(z) =
1

;/ e t?g(t)dt is absolutely convergent Vz € {z € C,|z| < R,|arg z| <
a} and F(z) = f(2).

Thus the integral F(z) provides a formal sum for the asymptotic series
f(2) and the Taylor expansion of F around the origin coincides with the
series f.

The main drawback of this method is that usually g is not known since, in
practice, only a finite set of numerically computed coefficients ¢, is available.
The series B cannot be used either since it converges only for |z| < 1/A.
Thus, the idea was to replace g(¢) in the definition of F' by [n + k/k|p(t)
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with n > —1, giving rise to the Borel-Padé approximants

! / * e t/(n + k/k]p(t)dt.

n+k/k
FE e =2 [

To prove that these Borel-Padé approximants tend to f(z) when k tends
to infinity, one has first to prove that [n + k/k|p tends to B uniformly
when £k — oo. Usually this is not possible and this was the reason why
Marziani (1987) replaced the Padé approximant [n + k/k|p by the Padé-
type approximant (n + k/k) thus obtaining the so-called Borel-Padé-type

approximant denoted by Fgﬁk/ "), Using the convergence results for Padé-
type approximants, he was able to prove the following theorem:

Theorem 4.8 Let f be an analytic function satisfying the assumptions
of the preceding theorem with « arbitrarily close to w. If the generating
polynomials v, are the Chebyshev polynomials of the first kind wvg(z) =
Ti(2z/A+ 1), then Vn > —1

f(z) = lim FZH0()

k—o0

for every z in the half plane {z, Re(z) > 0}.

The numerical results given by Marziani (1987) show that the Borel-Padé-
type approximants converge with almost the same rate as the Borel-Padé
approximants. The main advantage is that one has complete control of
the poles when using the Padé-type approximants and thus a proof of the
convergence of the method can be obtained.

Let us end this section with the z-transform. It is a functional trans-
formation of sequences that can be considered as equivalent to the Laplace
transform for functions. While the Laplace transform is useful in solving
differential equations, the z-transform plays a central role in the solution of
difference equations. If one changes z into 27!, it is identical to the method
of generating functions introduced by the French mathematician Francois
Nicole (1683-1758) and developed by Joseph Louis Lagrange (1736-1813).
It has many applications in digital filtering and in signal processing as ex-
emplified by Vich (1987). By signal processing we mean the transformation
of a function f of the time £, called the input signal, into an output signal h.
This transformation is realized via a system G called a digital filter. f can
be known for all values of ¢, and in that case we speak of a continuous signal
and a continuous filter, or it can only be known at equally spaced values of
t, t, = nT for n = 0,1,..., where T is the period, and, in that case, we
speak of a discrete signal and a discrete filter. The 2-transform of a discrete
signal is given by F(z) = Y oo fnz™™, where f, = f(nT). Corresponding
to the input sequence (f,) is the output sequence (h, = h(nT)). If we set
H(z) = 372 o hnz™™ then the system G can be represented by its so-called
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transfer function G(z) such that H(z) = G(z)F(z). In other words, if we
write G(z) = Y 02 o gnz " then hp = 3% o fkgn—k, n =0,1,.... Thusif (f,)
and (h,) are known, then (g,) can be computed. An important problem in
the analysis of digital filters is the identification of the transfer function
when (f,) and (h,) are known. If the filter is linear then G is a rational
function of z and, if not, its transfer function can be approximated by a
rational function R(z) = P(z)/Q(z) which is in fact the Padé approximant

[s/s]a(2).

4.3. Systems of equations

As explained in Section 1.6, the scalar e-algorithm (Wynn, 1956) is a re-
cursive method for computing Padé approximants. It is also a powerful
convergence-acceleration process (see, for example, Brezinski and Redivo-
Zaglia (1991)). Since, in numerical analysis, one often has to deal with
vector sequences, the e-algorithm was generalized to the vector case. Also
as usual, when generalizing from one dimension to several, several possible
generalizations exist. However, in our case, they all have some properties in
common since they were all built in order to compute exactly the vector S
for sequences of vectors (Sp) such that, Vn,

ao(Sp — S) + -+ ar(Spyx — 5) =0,

where ag, ..., ax are scalars such that ag +--- + ax # 0.

Due to this property, the various generalizations of the e-algorithm (which
obviously give rise to the corresponding generalizations of Padé approxi-
mants for series with vector coefficients) have applications in linear algebra.
Indeed, let us consider the sequence of vectors (z,) generated by

ZTny1 = Bz, + b,

where B is a square matrix such that A = I — B is regular and b is a vector.
Let z be the unique solution of the system Az = b. Then z,—z = B"(zo—z),
where g is the initial vector of the sequence (z,). Let Py(t) = ap + a1t +
-+ + agt* be the minimal polynomial of the matrix B for the vector zo — z,
that is, the polynomial of the minimal degree such that Px(A)(zo — z) = 0.
Then, Vn, APy (A)(xg — x) = ap(zn — ) + - - + ag(Tptk — ) = 0. More-
over, since A is assumed to be regular, 1 is not an eigenvalue of B, that is,
P(1) = ap + --- + ax, # 0. It follows, from the aforementioned property
shared by the various generalizations of the e-algorithm, that, when applied
to the sequence (z,), they will all lead to ag,? = zVn. Thus, all these gener-
alizations (and also the scalar e-algorithm applied componentwise) are direct
methods for solving systems of linear equations.
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As we shall see below, the connection between extrapolation methods and
linear algebra is still deeper. Moreover, such algorithms can also be used for
solving systems of nonlinear equations. They are derivative-free and exhibit
a quadratic convergence under the usual assumptions.

o The vector e-algorithm
Let us give an application of Theorem 3.8 to the solution of systems of
linear equations. We have the following theorem (Brezinski, 1974):

Theorem 4.9 Let us apply the vector e-algorithm to the sequence
Tny1 = Bz, + b, n=0,1,...,

where zq is a given arbitrary vector.

If A= 1T — B is regular, if m is the degree of the minimal polynomial of
B for the vector ¢ — « and if 0 is a zero of multiplicity r (possibly = 0) of
this polynomial, then Vn > 0

(n+7)

62(m—r) =2

If A is singular, if b belongs to its range (which means that the system has
infinitely many solutions), if m and r are defined as above and if ¢ denotes
the multiplicity of the zero equal to 1 of this polynomial, then, if ¢ = 1 we
have Vn > 0

(n+r) -
€o(m-r)—2) = z,
where x is one of the solutions of the system. If ¢ = 2, then Vn > 0

eg?Zn—r)—IS =Y
where y is a constant vector independent of n.

If A is singular, if b does not belong to its range (which means that the
system has no solution), if m is the degree of the minimal polynomial of B
for the vector x; — xg, if 0 is a zero of multiplicity r (possibly = 0) of this
polynomial and if ¢ denotes the multiplicity of its zero equal to 1, then, if
g =1, we have Vn > 0

(ntr)

E2(m—'r)-1 =%

where z is a constant vector independent of n.

This theorem was generalized to the case where the sequence (z,) is gen-
erated by

k
Tny1 = Z BiTn—i +b,
=0

where the B;’s are square matrices (Brezinski, 1974).
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e The topological e-algorithm
We saw above that the coefficients a; appearing in the recurrence relation
assumed to be satisfied by the S,’s are obtained by writing

ao(y, ASnyi) + - + ar(y, ASnir4i) =0

for i = 0,...,k — 1, where y is an arbitrary vector. Another possibility
consists in taking ¢ = 0 in this relation and choosing several linearly in-
dependent vectors y; instead of y. Again, solving the system of equations
(together with ag + --- + ax = 1) provides the a;’s and thus S. A recursive
algorithm for implementing this procedure (Brezinski, 1975) was obtained
by Jbilou (1988). It is called the SB-algorithm. When y; = e;, the method
proposed by Henrici (1964) is recovered. Its theory was developed in detail
by Sadok (1990) and a recursive algorithm for its implementation, called the
H-algorithm, was given by Brezinski and Sadok (1987).

Thus, from Theorem 3.8, the scalar (applied component-wise), the vector
and the topological e-algorithms and the S(3-algorithm are direct methods
for solving systems of linear equations. However, it must be noticed that,
due to their storage requirements, the e-algorithms are not competitive with
other direct methods from the practical point of view.

The topological e-algorithm is also related to the method due to Lanczos
(1952) for solving a system of linear equations Az = b. This method consists
in constructing a sequence of vectors (zx) such that

° T — T € Span(T(), Arg, ... ,Ak—lTo)lé .
e 71 =0b— Axi L span(y, A*y,...,A* y),

where g and y are arbitrary vectors and rg = b — Axg. These relations
completely define the vectors zj, if they exist. An important property of the
Lanczos method is its finite termination, namely, that 3k < p (the dimension
of the system) such that zy = z.

The vectors z, and r; can be recursively computed by several algorithms,
the most well known being the biconjugate-gradient method due to Fletcher
(1976) which becomes the conjugate gradient of Hestenes and Stiefel (1952)
when the matrix A is symmetric and positive definite. The other algorithms
for implementing the Lanczos method can be deduced from the theory of
formal orthogonal polynomials (Brezinski and Sadok, 1993) thus showing
the link with Padé approximants as studied by Gutknecht (1990). Thanks
to the theory of formal orthogonal polynomials, the vectors 7 of the Lanc-
zos method can be expressed as the ratios of two determinants. After some
manipulations on the rows and the columns of these determinants and using
the relation B = I — A, it can be proved (Brezinski, 1980) that the vectors xx
generated by the Lanczos method are identical to the vectors sg(,? obtained
by applying the topological e-algorithm to the sequence yn+1 = By, +b with
Yo = xo. With the determinantal formula of the topological e-algorithm, a
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determinantal expression for the iterates of the CGS algorithm of Sonneveld
(1989), which consists in squaring the formal orthogonal polynomials in-
volved in the Lanczos method, was obtained by Brezinski and Sadok (1993).

There are many more connections between methods of numerical linear
algebra and extrapolation algorithms but it is not our purpose here to em-
phasize this point. We shall refer the interested reader to Brezinski (1980),
Sidi (1988), Brezinski and Redivo-Zaglia (1991), Brezinski and Sadok (1992)
and Brezinski (1993).

e Systems of nonlinear equations

Let us consider the nonlinear fixed-point problem z = F(z), where F is
an application of R? into itself. This problem can be solved by Newton's
method which constructs a sequence of vectors converging quadratically to
under some assumptions. The main drawback of Newton’s method is that it
needs the knowledge of the Jacobian matrix of F', which is not always easily
available. Quasi-Newton methods provide an alternative but with a slower
rate of convergence. When p = 1, a well-known method is Steffensen’s,
which has a quadratic convergence under the same assumptions as Newton’s
method. Steffensen’s method is based on Aitken’s A? process and it does not
need the knowledge of the derivative of F'. Since the e-algorithm generalizes
Aitken’s process, the problem arises of finding a generalization of Steffensen’s
method for solving a system of p nonlinear equations written in the form
z = F(z). This algorithm (Brezinski, 1970; Gekeler, 1972) is as follows:

° choose xg,

e forn=0,1,... until convergence

e set ug = Tn,

e  compute u;41 = F(u;) fori =0,...,2p, — 1, where p, is the degree of
the minimal polynomial of F'(z) for the vector z, — z,

o apply the e-algorithm to the vectors ug, ..., usp,,

. set 41 = E9pn -

In this method, either the scalar (component-wise), the vector or the topo-
logical e-algorithm could be used. However, the following theorem (Le Fer-
rand, 1992a) was only proved in the case of the topological e-algorithm al-
though all the numerical experiments show that it might also be true for the
two other e-algorithms. The proof is based on the determinantal expression
of the vectors computed by the topological e-algorithm. A similar result was
also proved to hold for the vector Padé approximants (Van Iseghem, 1994).
Let H, be the matrix

1 . 1
1 (y, Aug) -+ (y,Aup,)
H, = —— )
| Aol :
(v, Aup,~1) - (y,Augp,-1)
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Theorem 4.10 If the matrix I — F'(z) is regular, if F’ satisfies a Lipschitz
condition and if 3N,3a > 0 such that Vn > N, |det Hy| > «, then the
sequence (z,) generated by the previous algorithm converges quadratically
to z for any zp in a neighborhood of z.

Henrici’s method is also a method with a quadratic convergence for sys-
tems of nonlinear equations (Ortega and Rheinboldt, 1970). It is equivalent
to the vector Padé approximants when k¥ = d + 1. It has the same gen-
eral structure as the algorithm given above after replacing 2p, by p, + 1
and using either the SB-algorithm or the H-algorithm instead of one of the
g-algorithms.
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